Benha University Faculty of Engineering – Shoubra Engineering Mathematics and Physics department Preparatory year		Midterm Exam (A) Date: Tues. 21/11/2018 Course title: Mechanics Course code: EMP 012 Duration: 1 hour
Name:	Section:	Mark:

1- Replace the system by a force and couple moment at A. Then find the intersection of a single resultant force with the column AB and BC. (18 mark)

2- Determine the support reactions on the member. The collar at A is fixed to the member and can slide vertically along the vertical shaft. (14 mark)

Benha University Faculty of Engineering – Shoubra Engineering Mathematics and Physics department Preparatory year		Midterm Exam (B) Date: Tues. 21/11/2018 Course title: Mechanics Course code: EMP 012 Duration: 1 hour
Name:	Section:	Mark:

1- Reduce the system to a force and couple moment at the origin O. Also find the location (x, y) of the single equivalent resultant force. (18 mark)

2- Determine the support reactions on the member. The collar at A is fixed to the member and can slide vertically along the vertical shaft. (14 mark)

Benha University Faculty of Engineering – Shoubra Engineering Mathematics and Physics department Preparatory year		Midterm Exam (C) Date: Tues. 21/11/2018 Course title: Mechanics Course code: EMP 012 Duration: 1 hour
Name:	Section:	Mark:

1- Replace the system by a force and couples at o .Then replace the force and couple by a wrench (central axis and strength). (18 mark)

2- The frame supports the weight, Determine the reactions at A & D. (14 mark)

Benha UniversityMidterm Exam (C)Faculty of Engineering – ShoubraImage: Course title: MechanicsEngineering Mathematics andImage: Course title: MechanicsPhysics departmentImage: Course code: EMP 012Preparatory yearImage: Duration: 1 hourName:Section:

1.a- The rod shown is subjected to a horizontal force $\vec{F} = (300 \,\hat{j}) N$. Determine the magnitude of this force parallel and perpendicular to member AB.

6

D

1.b- If the bucket and its content have a total weight of 20 lb, determine the force in the supporting cables DA, DB and DC.

F=30Q

2

R

2

С

3

2- Replace the system of forces and couples by a wrench (Specify the vector equation of its axis and its pitch).

Benha UniversityMidterm Exam (D)Faculty of Engineering – ShoubraDate: Tues. 21/11/2018Engineering Mathematics andCourse title: MechanicsPhysics departmentCourse code: EMP 012Preparatory yearDuration: 1 hour

1- Replace The Forces With a Force and Couple moment at A. (18 mark)

2- The frame supports the weight, Determine the reactions at A & D. (14 mark)

Benha University Faculty of Engineering - Shoubra Engineering Mathematics and Physics department Preparatory year	Midterm Exam (D) Date: Tues. 07/11/2017 Course title: Mechanics Course code: EMP 012 Duration: 1 hour
Name:	Section:
1.a- The rod shown is subjected to a horizontal force \vec{F} this force parallel and perpendicular to member AB.	= $(275 \hat{j}) N$. Determine the magnitude of B F=275 3 V.
X	6 C 2 D
1.b- If cable AD is subjected to a tension force 450 N, determine the force in cables AC and AB and the force F needed for equilibrium.	F 6 m 1.5 m 2 m C 2 m C 3 m 2.5 m 2.5 m

2- A rectangular block is acted upon by three forces as shown ($F_2=F_3=10$ lb, $F_1=20$ lb), reduce the system of forces to a wrench (Specify the vector equation of its axis and its pitch).

2- Determine the magnitudes of F_1 , F_2 , and F_3 for equilibrium of the

minis doely!

mar.TermeT.t.140

110- and 111

12

ne ghirtead

Benha University	Name:-	
Faculty of Engineering at Shoubra		Mid Term Exam
Mathematical and physical Dept	Mechanics	Nov 2012
Time 1 hour 15 metrollups not ra but	Deviatudes of F., F., 1	5- Determine the n

1- Find the simple Resultant of this system of forces knowing that

$\mathbf{P}_1 = \mathbf{P}_2 = \mathbf{P}_3 = \mathbf{P}_4 = \mathbf{P}$
SI! P2 I
$A\hat{c} = \alpha(\hat{i}+j)$ $Fu = \alpha(-\hat{i}+\hat{j})$ Pu
$\overline{BG} = \alpha(-j+k)$
$D\overline{I} = \alpha(j+k)$
$= P_{1} = P_$
$\overline{R} = P \overline{EH} = \Pr(-\hat{i}+\hat{j})$
$\overline{P}_{3} = P \overline{RG} = \frac{P}{52} \left(-\hat{j} + \hat{k} \right) \qquad \alpha \qquad \left(\frac{1}{52} - \frac{1}{5$
R= P DT = P(j+h)
More the system to print A: (a, 0,0)
14 The resultant fire.
$R = R + R + R + R + R = \frac{P}{2}(2j + i\lambda) = VEP(j + \lambda)$
2nd The resultent moment due to movement.
$M_{A} = AD X I_{4} + AU X I_{3} + AE X I_{2}$ $M_{A} = a\hat{i} X E (\hat{i} + \hat{k}) + a\hat{i} X E (-\hat{i} + \hat{k}) + a(\hat{i} + \hat{k}) X E (-\hat{i} + \hat{j})$
$= P_{a} \left[(k - \hat{i}) + (0 + \hat{i}) + (0 + \hat{k} - \hat{j} - \hat{i}) \right]$
$M_{A} = \int_{-\infty}^{\infty} \left[-(\lambda - j) + j\hat{k} \right] = \sqrt{2} Pa\left(-\hat{j} + \hat{k} \right)$
The fit i fit ind Rare perpendicular or not:
M. R = VE Pa (- f+ h). VEP (f+h) = 2Pa (-1+1)= zero
S. Rond A are perpendicular => The system can be reamled to a signe mic
Let the puttion of the single fire R be at point L
= MA = OLXR
$\sqrt{2}Pa(-j+k) = (1 j)h k \sqrt{2}R = (j-2)(1-2(j)+2)h$
$\begin{array}{c} \gamma \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
$-\chi = -\alpha \longrightarrow \chi = \alpha$

5

2. Determine the magnitudes of
$$\vec{F}_1$$
, \vec{F}_2 , and \vec{F}_3 for equilibrium of the particle.

$$\vec{F_1} = \vec{F_1} = \vec{F_1} = \vec{F_1} = \vec{F_1} = \vec{F_2} = \vec{F_1} = \vec{F_2} = \vec{$$

substitule in (3) F2 = 228.047 N

.

Benha University
Faculty of Engineering at Shoubra
Mathematical and physical Dept
Time I hour
1 - Find the relation between a,b,c to make the system of forces be a
single resultant.
5.1.
The condition that a single force to that the
equivilent h a single force to that the
resultant fonce and moment of the system
of orgic pints be perpendicular.
c. Mave the system to pint A
1th The resultant moment about A: due to movement

$$M_{a} = P(x_{b} - Px_{c} - M_{b} - P(x_{c} - M_{b} - M_{b} - M_{b})$$

 $M_{a} = P(x_{b} - Px_{c} - M_{b} - Px_{c} - M_{b} - P(x_{c} - M_{b} - Px_{c} - M_{b} - P(x_{c} - x_{c}) - M_{c} -$

x

.

2- Determine the magnitudes of \vec{F}_1 , \vec{F}_2 , and \vec{F}_3 for equilibrium of the

particle Sul: 117 Resulve each forces SKN Y Fi: 15 F17 = - F1 2030 Fig = 0 2.8 kN Fiz= Fysin30 * 52: $F_{22} = -F_2(7/25)$ F2J= - F2 (24/25) Fiz = 0 $* \frac{F_{31}}{F_{3n}} = F_3$ F37=0 F32=0 * 2-8W X=0 × o.SW X = - U.SSIMISW Y = U.S COIS W Y=0 7=+2.8W 7= 0 2nd Due to equilibrium. IF1=0 -> -F1Co3v-F2(35)+F3-V.55m15=0----(1) EFy= - F2(24) + u. SCo 15= - F2= 0. SUSI W. EF2=0 -> Fisim30-28=0 -> Fi= 5.6W. subsolitute by Fy and F2 in (1) F= = 5.12 W

Benha University	Name:-	and the second se
Faculty of Engineering at Shoubra		Mid Term Exam
Mathematical and physical Dept	Mechanics	Nov 2012
Time 1 hour the monoid paper of 1 ba		2- Determine to con

1- Find the simple Resultant of this system of forces knowing that

$$\begin{split} \mathbf{P}_{1} = \mathbf{P}_{2} = \mathbf{P}_{3} = \mathbf{P}_{4} = \mathbf{P} \\ \begin{array}{c} \sum \mathbf{I}_{1} \\ \overline{\mathbf{A}} \subset = \alpha(\mathbf{1}, \mathbf{1}) \\ \overline{\mathbf{C}} \mathbf{f}_{1} = \alpha(-\mathbf{f}, \mathbf{1}, \mathbf{f}) \\ \overline{\mathbf{C}} \mathbf{f}_{2} = \alpha(-\mathbf{f}, \mathbf{1}, \mathbf{f}) \\ \overline{\mathbf{C}} \mathbf{f}_{1} = \alpha(-\mathbf{f}, \mathbf{1}, \mathbf{f}) \\ \overline{\mathbf{C}} \mathbf{f}_{2} = \alpha(-\mathbf{f}, \mathbf{1}, \mathbf{f}) \\ \overline{\mathbf{C}} \mathbf{f}_{1} = \mathbf{P} \underbrace{\mathbf{E}}_{1} = \frac{\mathbf{P}}{\alpha(-\mathbf{f}, \mathbf{f})} \\ \overline{\mathbf{C}} \mathbf{f}_{2} = \mathbf{P} \underbrace{\mathbf{E}}_{1} = \frac{\mathbf{P}}{\alpha(-\mathbf{f}, \mathbf{f})} \\ \overline{\mathbf{R}} = \mathbf{P} \underbrace{\mathbf{E}}_{1} = \frac{\mathbf{P}}{\alpha(-\mathbf{f}, \mathbf{f})} \\ \overline{\mathbf{R}} = \mathbf{P} \underbrace{\mathbf{E}}_{1} = \frac{\mathbf{P}}{\alpha(-\mathbf{f}, \mathbf{f})} \\ \overline{\mathbf{R}} = \mathbf{P} \underbrace{\mathbf{E}}_{1} = \frac{\mathbf{P}}{\alpha(-\mathbf{f}, \mathbf{f}, \mathbf{h})} \\ \overline{\mathbf{R}} = \mathbf{P} \underbrace{\mathbf{E}}_{1} = \frac{\mathbf{P}}{\alpha(-\mathbf{f}, \mathbf{f}, \mathbf{h})} \\ \overline{\mathbf{R}} = \mathbf{P} \underbrace{\mathbf{E}}_{1} = \frac{\mathbf{P}}{\alpha(-\mathbf{f}, \mathbf{f}, \mathbf{h})} \\ \overline{\mathbf{R}} = \mathbf{P} \underbrace{\mathbf{E}}_{1} = \frac{\mathbf{P}}{\alpha(-\mathbf{f}, \mathbf{f}, \mathbf{h})} \\ \overline{\mathbf{R}} = \mathbf{P} \underbrace{\mathbf{E}}_{1} = \frac{\mathbf{P}}{\alpha(-\mathbf{f}, \mathbf{f}, \mathbf{h})} \\ \overline{\mathbf{R}} = \mathbf{P} \underbrace{\mathbf{E}}_{1} = \frac{\mathbf{P}}{\alpha(-\mathbf{f}, \mathbf{f}, \mathbf{h})} \\ \overline{\mathbf{R}} = \mathbf{R} \underbrace{\mathbf{E}}_{1} = \mathbf{R} \underbrace{\mathbf{E}}_{1} (\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \mathbf{R} \underbrace{\mathbf{E}}_{1} (\mathbf{f}_{1} + \mathbf{h}) = \mathbf{R} \underbrace{\mathbf{E}}_{1} (\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \mathbf{R} \underbrace{\mathbf{E}}_{1} (\mathbf{f}_{1} + \mathbf{h}) = \mathbf{R} \underbrace{\mathbf{E}}_{1} (\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \mathbf{R} \underbrace{\mathbf{E}}_{1} (\mathbf{f}_{1} + \mathbf{h}) + \mathbf{R} \underbrace{\mathbf{E}}_{1} (\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \mathbf{R} \underbrace{\mathbf{E}}_{1} (\mathbf{f}_{1} + \mathbf{h}) + \mathbf{R} \underbrace{\mathbf{E}}_{1} (\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \mathbf{R} \underbrace{\mathbf{E}}_{1} (-\mathbf{f}_{1} + \mathbf{h}) + \mathbf{R} \underbrace{\mathbf{E}}_{1} (-\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \frac{\mathbf{E}}{\mathbf{E}} (-\mathbf{f}_{1} + \mathbf{h}) + \mathbf{R} \underbrace{\mathbf{E}}_{1} (-\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \frac{\mathbf{E}}{\mathbf{E}} (-\mathbf{f}_{1} + \mathbf{h}) + \mathbf{R} \underbrace{\mathbf{E}}_{1} (-\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \frac{\mathbf{E}}{\mathbf{E}} (-\mathbf{f}_{1} + \mathbf{h}) + \mathbf{R} \underbrace{\mathbf{E}}_{1} (-\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \frac{\mathbf{E}}{\mathbf{E}} (-\mathbf{f}_{1} + \mathbf{h}) + \mathbf{R} \underbrace{\mathbf{E}}_{1} (-\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \frac{\mathbf{E}}{\mathbf{E}} (-\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \frac{\mathbf{E}}{\mathbf{E}} (-\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \frac{\mathbf{E}}{\mathbf{E}} (-\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \mathbf{E} \underbrace{\mathbf{E}}_{1} (-\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \mathbf{E} \underbrace{\mathbf{E}}_{1} (-\mathbf{f}_{1} + \mathbf{h}) \\ \mathbf{R} = \frac{\mathbf{E}}{\mathbf{E}} (-\mathbf{f}_{1} + \mathbf{h}$$

2- Determine the magnitudes of
$$\vec{F}_1$$
, \vec{F}_2 , and \vec{F}_3 for equilibrium of the particle.
11' Resulte tach first:
 $\vec{F}_1 = \vec{F}_1 \cos 6 \circ$
 $\vec{F}_1 = 0$
 $\vec{F}_1 = \vec{F}_1 \sin 6 \circ$
 $\vec{F}_2 = \vec{F}_1 \sin 6 \circ$
 $\vec{F}_2 = \vec{F}_2 (3/5)$
 $\vec{F}_{27} = -\vec{F}_2 (3/5)$
 $\vec{F}_{27} = -\vec{F}_2 (-3) \circ$
 $\vec{F}_{27} = -\vec{F}_2 (-3) \circ$
 $\vec{F}_{27} = -\vec{F}_2 (-3) \circ$
 $\vec{F}_{27} = 0$
 $\vec{F}_{21} = 0$
 $\vec{F}_{22} = -\vec{F}_{2} (-\vec{F}_{23}) \cdot \vec{F}_{23} - \vec{F}_{2} (-\vec{F}_{23}) \cdot \vec{F}_{23} - \vec{F}_{23} (-\vec{F}_{23}) \cdot \vec{F}_{$

subistitule in (3) F2 = 228.047 N

.

Benha University Faculty of Engineering at Shoubra Mechanics Time 1 hour

Mid Term Exam April 2013

1- A particle moves along a circle $r = 2a \cos \theta$ in such a way that its acceleration towards the origin is always zero – prove that

$$d^{2} \theta/dt^{2} = -2 \cot \theta.\theta^{-2}$$
(niven: $r = 2u Cod \theta$
 $a_{r} = 0$ (radial component of the
 $a (celeration)$
 $b^{2} o \ddot{r} - r \dot{\theta}^{2} = 0 - - - (1)$
 $\# \dot{r} = -2a \dot{\theta} \sin \theta - 2a \dot{\theta}^{2} \cos \theta$
subjoint the in $cqu^{2} (1)$
 $-2a \dot{\theta}^{2} \sin \theta - 2a \dot{\theta}^{2} \cos \theta = 0$
 $-\dot{\theta}^{2} \sin \theta - 2a \dot{\theta}^{2} \cos \theta = 0$
 $g^{2} o \dot{\theta}^{2} = -2 \dot{\theta}^{2} \cot \theta$
Hence the prove.

2- A particle is projected with velocity u so that its range on the horizontal plane is twice the greatest height attained. Prove that the range is

Benha University Faculty of Engineering at Shoubra Mechanics Time 1 hour

Mid Term Exam April 2013

1-Find the radial and transverse components for a particle moves such that $r = a (1 + \sin t)$, $\theta = 1 - e^t$ 801 It The radial and transversal components for the velocity. (transverse Vr= i (radial) and Vo= vo. (transversul) ê direction (rudial-direction) i= a cost $\dot{\theta} = -e^{t}$ 30 Vr= acust and Vo= - a (1+sint)et ----20 2nd The rulial and transversal components for the acceleration ay=r'-ro'2 (rudied) and ap= 2ro'+ro' (transversal) F= -asint $v = Q_r = -\alpha sint - \alpha (l+sint) (-e^t)^2$ = -asit - aet - aetsit $\alpha_{\gamma} = -\alpha \left((l+sint) e^{2t} + sint \right)$ × and $a_{10} = 2 a(Cust)(-e^t) + a(1+sunt)(-e^t)$ ap=-aet(2cost+1+sint)

2- A particle is projected from a certain point. It is noticed that It's range on the horizontal plane which passes through the point of projection is equal to three times the maximum height above the point of projection and its velocity after two seconds from the time of projection is equal to the velocity of projection: find the velocity of projection, find also the position of projection after 5 second from the beginning of projection.

The position of the projectile after spec (i.e. and y (widemates) $\chi = \text{Utcode} = 12.263 \times 5 \times \frac{3}{5} = 36.788 \text{ m}$ $J = \text{Utcode} = \frac{12.263 \times 5 \times \frac{3}{5}}{5} = \frac{12.978}{5} \times \frac{4}{5} - \frac{1}{2} \times 9.78 \text{ [(5)}^2 = 73.575 \text{ m}$